A Semi-implicit Moving Mesh Method for the Focusing Nonlinear Schrödinger Equation
نویسندگان
چکیده
An efficient adaptive moving mesh method for investigation of the semi-classical limit of the focusing nonlinear Schrödinger equation is presented. The method employs a dynamic mesh to resolve the sea of solitons observed for small dispersion parameters. A second order semi-implicit discretization is used in conjunction with a dynamic mesh generator to achieve a cost-efficient, accurate, and stable adaptive scheme. This method is used to investigate with highly resolved numerics the solution’s behavior for small dispersion parameters. Convincing evidence is presented of striking regular space-time patterns for both analytic and non-analytic initial data.
منابع مشابه
Recent Progress on the Development of a Particle Method for Incompressible Single- and Multi- Phase Flow Computation
The use of particle method in solving the Navier-Stokes equation is attractive from the viewpoint of avoiding the explicit discretization of the nonlinear convection term adopted in the commonly used Eulerian approach. In this paper, we shall report on the progress of our recently developed particle method in solving the Navier-Stokes equation. Starting from the conventional Moving Particle Sem...
متن کاملThe Numerical Solution of One-Dimensional Phase Change Problems Using an Adaptive Moving Mesh Method
The numerical solution of one-dimensional phase change problems using an adaptive moving mesh method. An adaptive moving mesh method is developed for the numerical solution of an enthalpy formulation of heat conduction problems with a phase change. The algorithm is based on a very simple mesh modiication strategy that allows the smooth evolution of mesh nodes to track interfaces. At each time s...
متن کاملA Fourier Spectral Moving Mesh Method for the Cahn-Hilliard Equation with Elasticity
In recent years, Fourier spectral methods have emerged as competitive numerical methods for large-scale phase field simulations of microstructures in computational materials sciences. To further improve their effectiveness, we recently developed a new adaptive Fourier-spectral semi-implicit method (AFSIM) for solving the phase field equation by combining an adaptive moving mesh method and the s...
متن کاملUnconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation
In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...
متن کاملWeak and Strong Order of Convergence of a Semi Discrete Scheme for the Stochastic Nonlinear Schrödinger Equation
In this article, we analyze the error of a semi discrete scheme for the stochastic non linear Schrödinger equation with power nonlinearity. We consider supercritical or subcritical nonlinearity and the equation can be either focusing of defocusing. Allowing sufficient spatial regularity we prove that the numerical scheme has strong order 1/2 in general and order 1 if the noise is additive. Furt...
متن کامل